Different Genetic Algorithms and the Evolution of Specialization: A Study with Groups of Simulated Neural Robots
نویسندگان
چکیده
Organisms that live in groups, from microbial symbionts to social insects and schooling fish, exhibit a number of highly efficient cooperative behaviors, often based on role taking and specialization. These behaviors are relevant not only for the biologist but also for the engineer interested in decentralized collective robotics. We address these phenomena by carrying out experiments with groups of two simulated robots controlled by neural networks whose connection weights are evolved by using genetic algorithms. These algorithms and controllers are well suited to autonomously find solutions for decentralized collective robotic tasks based on principles of self-organization. The article first presents a taxonomy of role-taking and specialization mechanisms related to evolved neural network controllers. Then it introduces two cooperation tasks, which can be accomplished by either role taking or specialization, and uses these tasks to compare four different genetic algorithms to evaluate their capacity to evolve a suitable behavioral strategy, which depends on the task demands. Interestingly, only one of the four algorithms, which appears to have more biological plausibility, is capable of evolving role taking or specialization when they are needed. The results are relevant for both collective robotics and biology, as they can provide useful hints on the different processes that can lead to the emergence of specialization in robots and organisms.
منابع مشابه
Comparison of genetic algorithms used to evolve specialisation in groups of robots
This paper investigates the role of genetic algorithms in determining which kind of specialisation emerges in decentralised simulated teams of robots controlled by evolved neural networks. As shown in previous works, different tasks may be better solved by robots specialized in a particular manner. However it was not clarified how much the genetic algorithm used might drive the evolution of one...
متن کاملBehaviour Patterns Evolution on Individual and Group Level
In this paper we compare the evolution of simple behaviour patterns for both an individual and a group of simulated physical robots. An evolutionary algorithm with quite general objective function is used to study the ability to develop behaviour patterns such as the maze exploring ability. The group experiments demonstrate the development of collective behaviour where the group members follow ...
متن کاملSolving the local positioning problem using a four-layer artificial neural network
Today, the global positioning systems (GPS) do not work well in buildings and in dense urban areas when there is no lines of sight between the user and their satellites. Hence, the local positioning system (LPS) has been considerably used in recent years. The main purpose of this research is to provide a four-layer artificial neural network based on nonlinear system solver (NLANN) for local pos...
متن کاملForward kinematic analysis of planar parallel robots using a neural network-based approach optimized by machine learning
The forward kinematic problem of parallel robots is always considered as a challenge in the field of parallel robots due to the obtained nonlinear system of equations. In this paper, the forward kinematic problem of planar parallel robots in their workspace is investigated using a neural network based approach. In order to increase the accuracy of this method, the workspace of the parallel robo...
متن کاملYarn tenacity modeling using artificial neural networks and development of a decision support system based on genetic algorithms
Yarn tenacity is one of the most important properties in yarn production. This paper addresses modeling of yarn tenacity as well as optimally determining the amounts of the effective inputs to produce yarn with desired tenacity. The artificial neural network is used as a suitable structure for tenacity modeling of cotton yarn with 30 Ne. As the first step for modeling, the empirical data is col...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial life
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2013